Untangling the Hairball: Fitness-Based Asymptotic Reduction of Biological Networks.
نویسندگان
چکیده
Complex mathematical models of interaction networks are routinely used for prediction in systems biology. However, it is difficult to reconcile network complexities with a formal understanding of their behavior. Here, we propose a simple procedure (called ϕ¯) to reduce biological models to functional submodules, using statistical mechanics of complex systems combined with a fitness-based approach inspired by in silico evolution. The ϕ¯ algorithm works by putting parameters or combination of parameters to some asymptotic limit, while keeping (or slightly improving) the model performance, and requires parameter symmetry breaking for more complex models. We illustrate ϕ¯ on biochemical adaptation and on different models of immune recognition by T cells. An intractable model of immune recognition with close to a hundred individual transition rates is reduced to a simple two-parameter model. The ϕ¯ algorithm extracts three different mechanisms for early immune recognition, and automatically discovers similar functional modules in different models of the same process, allowing for model classification and comparison. Our procedure can be applied to biological networks based on rate equations using a fitness function that quantifies phenotypic performance.
منابع مشابه
Untangling Hairballs - From 3 to 14 Degrees of Separation
Small-world graphs have characteristically low average distance and thus cause force-directed methods to generate drawings that look like hairballs. This is by design as the inherent objective of these methods is a globally uniform edge length or, more generally, accurate distance representation. The problem arises in graphs of high density or high conductance, and in the presence of high-degre...
متن کاملUntangling Hairballs
Small-world graphs have characteristically low average distance and thus cause force-directed methods to generate drawings that look like hairballs. This is by design as the inherent objective of these methods is a globally uniform edge length or, more generally, accurate distance representation. The problem arises in graphs of high density or high conductance, and in the presence of high-degre...
متن کاملRobust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays
In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...
متن کاملAsymptotic Close to Optimal Resource Allocation in Centralized Multi-band Wireless Networks
This paper concerns sub-channel allocation in multi-user wireless networks with a view to increasing the network throughput. It is assumed there are some sub-channels to be equally divided among active links, such that the total sum rate increases, where it is assumed each link is subject to a maximum transmit power constraint. This problem is found to be a non-convex optimization problem and i...
متن کاملDenoising and Untangling Graphs Using Degree Priors
This paper addresses the problem of untangling hidden graphs from a set of noisy detections of undirected edges. We present a model of the generation of the observed graph that includes degree-based structure priors on the hidden graphs. Exact inference in the model is intractable; we present an efficient approximate inference algorithm to compute edge appearance posteriors. We evaluate our mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 113 8 شماره
صفحات -
تاریخ انتشار 2017